Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Sci Rep ; 11(1): 22612, 2021 11 19.
Article in English | MEDLINE | ID: covidwho-1526106

ABSTRACT

This paper proposes an investigating SARS-CoV-2 inactivation on surfaces with UV-C LED irradiation using our in-house-developed ray-tracing simulator. The results are benchmarked with experiments and Zemax OpticStudio commercial software simulation to demonstrate our simulator's easy accessibility and high reliability. The tool can input the radiant profile of the flexible LED source and accurately yield the irradiance distribution emitted from an LED-based system in 3D environments. The UV-C operating space can be divided into the safe, buffer, and germicidal zones for setting up a UV-C LED system. Based on the published measurement data, the level of SARS-CoV-2 inactivation has been defined as a function of UV-C irradiation. A realistic case of public space, i.e., a food court in Singapore, has been numerically investigated to demonstrate the relative impact of environmental UV-C attenuation on the SARS-CoV-2 inactivation. We optimise a specific UV-C LED germicidal system and its corresponding exposure time according to the simulation results. These ray-tracing-based simulations provide a useful guideline for safe deployment and efficient design for germicidal UV-C LED technology.


Subject(s)
SARS-CoV-2/radiation effects , Ultraviolet Rays , Virus Inactivation/radiation effects , Computer Simulation , Disinfection/instrumentation , Imaging, Three-Dimensional , Singapore , Sterilization/instrumentation
2.
ScientificWorldJournal ; 2021: 9342748, 2021.
Article in English | MEDLINE | ID: covidwho-1495720

ABSTRACT

BACKGROUND: Recently, an outbreak of a novel human coronavirus SARS-CoV-2 has become a world health concern leading to severe respiratory tract infections in humans. Virus transmission occurs through person-to-person contact, respiratory droplets, and contaminated hands or surfaces. Accordingly, we aim at reviewing the literature on all information available about the persistence of coronaviruses, including human and animal coronaviruses, on inanimate surfaces and inactivation strategies with biocides employed for chemical and physical disinfection. METHOD: A comprehensive search was systematically conducted in main databases from 1998 to 2020 to identify various viral disinfectants associated with HCoV and methods for control and prevention of this newly emerged virus. RESULTS: The analysis of 62 studies shows that human coronaviruses such as severe acute respiratory syndrome (SARS) coronavirus, Middle East respiratory syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV), canine coronavirus (CCV), transmissible gastroenteritis virus (TGEV), and mouse hepatitis virus (MHV) can be efficiently inactivated by physical and chemical disinfectants at different concentrations (70, 80, 85, and 95%) of 2-propanol (70 and 80%) in less than or equal to 60 s and 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Additionally, glutaraldehyde (0.5-2%), formaldehyde (0.7-1%), and povidone-iodine (0.1-0.75%) could readily inactivate coronaviruses. Moreover, dry heat at 56°C, ultraviolet light dose of 0.2 to 140 J/cm2, and gamma irradiation could effectively inactivate coronavirus. The WHO recommends the use of 0.1% sodium hypochlorite solution or an ethanol-based disinfectant with an ethanol concentration between 62% and 71%. CONCLUSION: The results of the present study can help researchers, policymakers, health decision makers, and people perceive and take the correct measures to control and prevent further transmission of COVID-19. Prevention and decontamination will be the main ways to stop the ongoing outbreak of COVID-19.


Subject(s)
COVID-19/prevention & control , Disinfectants/pharmacology , Disinfection/instrumentation , SARS-CoV-2 , Virus Inactivation/drug effects , 2-Propanol/pharmacology , Animals , COVID-19/virology , Coronavirus, Canine/drug effects , Disinfection/methods , Ethanol/pharmacology , Formaldehyde/pharmacology , Gamma Rays , Glutaral/pharmacology , Hot Temperature , Humans , Hydrogen Peroxide/pharmacology , Mice , Middle East Respiratory Syndrome Coronavirus/drug effects , Murine hepatitis virus/drug effects , Povidone-Iodine/pharmacology , Severe acute respiratory syndrome-related coronavirus/drug effects , Sodium Hypochlorite/pharmacology , Transmissible gastroenteritis virus/drug effects , Ultraviolet Rays
3.
Appl Environ Microbiol ; 87(22): e0153221, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1494943

ABSTRACT

Effective disinfection technology to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can help reduce viral transmission during the ongoing COVID-19 global pandemic and in the future. UV devices emitting UVC irradiation (200 to 280 nm) have proven to be effective for virus disinfection, but limited information is available for SARS-CoV-2 due to the safety requirements of testing, which is limited to biosafety level 3 (BSL3) laboratories. In this study, inactivation of SARS-CoV-2 in thin-film buffered aqueous solution (pH 7.4) was determined across UVC irradiation wavelengths of 222 to 282 nm from krypton chloride (KrCl*) excimers, a low-pressure mercury-vapor lamp, and two UVC light-emitting diodes. Our results show that all tested UVC devices can effectively inactivate SARS-CoV-2, among which the KrCl* excimer had the best disinfection performance (i.e., highest inactivation rate). The inactivation rate constants of SARS-CoV-2 across wavelengths are similar to those for murine hepatitis virus (MHV) from our previous investigation, suggesting that MHV can serve as a reliable surrogate of SARS-CoV-2 with a lower BSL requirement (BSL2) during UV disinfection tests. This study provides fundamental information on UVC's action on SARS-CoV-2 and guidance for achieving reliable disinfection performance with UVC devices. IMPORTANCE UV light is an effective tool to help stem the spread of respiratory viruses and protect public health in commercial, public, transportation, and health care settings. For effective use of UV, there is a need to determine the efficiency of different UV wavelengths in killing pathogens, specifically SARS-CoV-2, to support efforts to control the ongoing COVID-19 global pandemic and future coronavirus-caused respiratory virus pandemics. We found that SARS-CoV-2 can be inactivated effectively using a broad range of UVC wavelengths, and 222 nm provided the best disinfection performance. Interestingly, 222-nm irradiation has been found to be safe for human exposure up to thresholds that are beyond those effective for inactivating viruses. Therefore, applying UV light from KrCl* excimers in public spaces can effectively help reduce viral aerosol or surface-based transmissions.


Subject(s)
Disinfection/methods , SARS-CoV-2/radiation effects , Virus Inactivation/radiation effects , Animals , Bacteriophage phi 6/radiation effects , COVID-19/prevention & control , COVID-19/transmission , Coronavirus 229E, Human/radiation effects , Disinfection/instrumentation , Humans , Mice , Murine hepatitis virus/radiation effects , Ultraviolet Rays
4.
PLoS One ; 16(10): e0258336, 2021.
Article in English | MEDLINE | ID: covidwho-1463315

ABSTRACT

Decontaminating N95 respirators for reuse could mitigate shortages during the COVID-19 pandemic. Although the United States Center for Disease Control has identified Ultraviolet-C irradiation as one of the most promising methods for N95 decontamination, very few studies have evaluated the efficacy of Ultraviolet-C for SARS-CoV-2 inactivation. In addition, most decontamination studies are performed using mask coupons that do not recapitulate the complexity of whole masks. We sought to directly evaluate the efficacy of Ultraviolet-C mediated inactivation of SARS-CoV-2 on N95 respirators. To that end we created a portable UV-C light-emitting diode disinfection chamber and tested decontamination of SARS-CoV-2 at different sites on two models of N95 respirator. We found that decontamination efficacy depends on mask model, material and location of the contamination on the mask. Our results emphasize the need for caution when interpreting efficacy data of UV-C decontamination methods.


Subject(s)
Decontamination , Disinfection , Masks , N95 Respirators , Ultraviolet Rays , Decontamination/instrumentation , Decontamination/methods , Disinfection/instrumentation , Disinfection/methods , Equipment Reuse
5.
Sci Rep ; 11(1): 19930, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1462026

ABSTRACT

Transmission of SARS-CoV-2 by aerosols has played a significant role in the rapid spread of COVID-19 across the globe. Indoor environments with inadequate ventilation pose a serious infection risk. Whilst vaccines suppress transmission, they are not 100% effective and the risk from variants and new viruses always remains. Consequently, many efforts have focused on ways to disinfect air. One such method involves use of minimally hazardous 222 nm far-UVC light. Whilst a small number of controlled experimental studies have been conducted, determining the efficacy of this approach is difficult because chamber or room geometry, and the air flow within them, influences both far-UVC illumination and aerosol dwell times. Fortunately, computational multiphysics modelling allows the inadequacy of dose-averaged assessment of viral inactivation to be overcome in these complex situations. This article presents the first validation of the WYVERN radiation-CFD code for far-UVC air-disinfection against survival fraction measurements, and the first measurement-informed modelling approach to estimating far-UVC susceptibility of viruses in air. As well as demonstrating the reliability of the code, at circa 70% higher, our findings indicate that aerosolized human coronaviruses are significantly more susceptible to far-UVC than previously thought.


Subject(s)
Coronavirus 229E, Human/radiation effects , Coronavirus Infections/prevention & control , Coronavirus OC43, Human/radiation effects , Disinfection/methods , Ultraviolet Rays , Virus Inactivation/radiation effects , Aerosols/isolation & purification , Air Microbiology , COVID-19/prevention & control , Computer Simulation , Coronavirus 229E, Human/isolation & purification , Coronavirus 229E, Human/physiology , Coronavirus OC43, Human/isolation & purification , Coronavirus OC43, Human/physiology , Disinfection/instrumentation , Equipment Design , Humans , Models, Biological
6.
Sci Rep ; 11(1): 19470, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1447318

ABSTRACT

The germicidal potential of specific wavelengths within the electromagnetic spectrum is an area of growing interest. While ultra-violet (UV) based technologies have shown satisfactory virucidal potential, the photo-toxicity in humans coupled with UV associated polymer degradation limit their use in occupied spaces. Alternatively, longer wavelengths with less irradiation energy such as visible light (405 nm) have largely been explored in the context of bactericidal and fungicidal applications. Such studies indicated that 405 nm mediated inactivation is caused by the absorbance of porphyrins within the organism creating reactive oxygen species which result in free radical damage to its DNA and disruption of cellular functions. The virucidal potential of visible-light based technologies has been largely unexplored and speculated to be ineffective given the lack of porphyrins in viruses. The current study demonstrated increased susceptibility of lipid-enveloped respiratory pathogens of importance such as SARS-CoV-2 (causative agent of COVID-19) and influenza A virus to 405 nm, visible light in the absence of exogenous photosensitizers thereby indicating a potential alternative porphyrin-independent mechanism of visible light mediated viral inactivation. These results were obtained using less than expected irradiance levels which are considered safe for humans and commercially achievable. Our results support further exploration of the use of visible light technology for the application of continuous decontamination in occupied areas within hospitals and/or infectious disease laboratories, specifically for the inactivation of respiratory pathogens such as SARS-CoV-2 and Influenza A.


Subject(s)
Disinfection/methods , Influenza A Virus, H1N1 Subtype/radiation effects , SARS-CoV-2/radiation effects , Disinfection/instrumentation , Dose-Response Relationship, Radiation , Encephalomyocarditis virus/radiation effects , Light , Time Factors , Virus Inactivation/radiation effects
7.
PLoS One ; 16(9): e0257434, 2021.
Article in English | MEDLINE | ID: covidwho-1443838

ABSTRACT

Although research has shown that the COVID-19 disease is most likely caused by airborne transmission of the SARS-CoV-2 virus, disinfection of potentially contaminated surfaces is also recommended to limit the spread of the disease. Use of electrostatic sprayers (ESS) and foggers to rapidly apply disinfectants over large areas or to complex surfaces has emerged with the COVID-19 pandemic. ESSs are designed to impart an electrostatic charge to the spray droplets with the goal of increasing deposition of the droplets onto surfaces, thereby promoting more efficient use of the disinfectant. The purpose of this research was to evaluate several spray parameters for different types of sprayers and foggers, as they relate to the application of disinfectants. Some of the parameters evaluated included the spray droplet size distribution, the electrostatic charge, the ability of the spray to wrap around objects, and the loss of disinfectant chemical active ingredient due to the spray process. The results show that most of the devices evaluated for droplet size distribution had an average volume median diameter ≥ 40 microns, and that four out of the six ESS tested for charge/mass produced sprays of at least 0.1 mC/kg. A minimal wrap-around effect of the spray deposition onto a cylindrical object was observed. The loss of disinfectant active ingredient to the air due to spraying was minimal for the two disinfectants tested, and concurrently, the active ingredient concentrations of the liquid disinfectants sprayed and collected 3 feet (1 meter) away from the spray nozzle do not decrease.


Subject(s)
COVID-19/prevention & control , Disinfectants/administration & dosage , Disinfection/instrumentation , Disinfectants/pharmacology , Disinfection/methods , Equipment Design , Humans , SARS-CoV-2/drug effects , Static Electricity , Surface Properties/drug effects
8.
Biocontrol Sci ; 26(3): 129-135, 2021.
Article in English | MEDLINE | ID: covidwho-1438813

ABSTRACT

The current pandemic of novel coronavirus disease (COVID-19) has highlighted the importance of disinfectants. As a raw material for next-generation disinfectants, scallop shell-derived calcium oxide (CaO) has been revealed to exhibit significant virucidal and microbicidal activities and is compatible with living tissues and the environment. This minireview summarizes recent progress in the development of disinfectants from scallop shell-CaO, focusing especially on studies of clinical and daily use applications. We describe the preparation, basic characteristics, and virucidal and microbicidal activities of scallop shell-CaO disinfectants. Furthermore, their applications in the disinfection of contaminated masks and the treatment of infected wounds are briefly introduced.


Subject(s)
Animal Shells/chemistry , Calcium Compounds/pharmacology , Disinfectants/pharmacology , Disinfection/methods , Oxides/pharmacology , Pectinidae/chemistry , Animals , Disinfection/instrumentation , Disinfection/trends , Humans
9.
Sci Rep ; 11(1): 18213, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1410885

ABSTRACT

With the spread of COVID-19, significant emphasis has been placed on mitigation techniques such as mask wearing to slow infectious disease transmission. Widespread use of face coverings has revealed challenges such as mask contamination and waste, presenting an opportunity to improve the current technologies. In response, we have developed the Auto-sanitizing Retractable Mask Optimized for Reusability (ARMOR). ARMOR is a novel, reusable face covering that can be quickly disinfected using an array of ultraviolet C lamps contained within a wearable case. A nanomembrane UVC sensor was used to quantify the intensity of germicidal radiation at 18 different locations on the face covering and determine the necessary exposure time to inactivate SARS-CoV-2 in addition to other viruses and bacteria. After experimentation, it was found that ARMOR successfully provided germicidal radiation to all areas of the mask and will inactivate SARS-CoV-2 in approximately 180 s, H1N1 Influenza in 130 s, and Mycobacterium tuberculosis in 113 s, proving that this design is effective at eliminating a variety of pathogens and can serve as an alternative to traditional waste-producing disposable face masks. The accessibility, ease of use, and speed of sanitization supports the wide application of ARMOR in both clinical and public settings.


Subject(s)
Disinfection/methods , Masks , COVID-19/prevention & control , COVID-19/virology , Disinfection/instrumentation , Humans , Influenza A Virus, H1N1 Subtype/radiation effects , Mycobacterium tuberculosis/radiation effects , SARS-CoV-2/isolation & purification , SARS-CoV-2/radiation effects , Ultraviolet Rays
10.
PLoS One ; 16(5): e0251817, 2021.
Article in English | MEDLINE | ID: covidwho-1388915

ABSTRACT

The transmission of SARS-CoV-2 through contact with contaminated surfaces or objects is an important form of transmissibility. Thus, in this study, we evaluated the performance of a disinfection chamber designed for instantaneous dispersion of the biocidal agent solution, in order to characterize a new device that can be used to protect individuals by reducing the transmissibility of the disease through contaminated surfaces. We proposed the necessary adjustments in the configuration to improve the dispersion on surfaces and the effectiveness of the developed equipment. Computational Fluid Dynamics (CFD) simulations of the present technology with a chamber having six nebulizer nozzles were performed and validated through qualitative and quantitative comparisons, and experimental tests were conducted using the method Water-Sensitive Paper (WSP), with an exposure to the biocidal agent for 10 and 30 s. After evaluation, a new passage procedure for the chamber with six nozzles and a new configuration of the disinfection chamber were proposed. In the chamber with six nozzles, a deficiency was identified in its central region, where the suspended droplet concentration was close to zero. However, with the new passage procedure, there was a significant increase in wettability of the surface. With the proposition of the chamber with 12 nozzles, the suspended droplet concentration in different regions increased, with an average increase of 266%. The experimental results of the new configuration proved that there was an increase in wettability at all times of exposure, and it was more significant for an exposure of 30 s. Additionally, even in different passage procedures, there were no significant differences in the results for an exposure of 10 s, thereby showing the effectiveness of the new configuration or improved spraying and wettability by the biocidal agent, as well as in minimizing the impact caused by human factor in the performance of the disinfection technology.


Subject(s)
COVID-19/epidemiology , Decontamination/methods , Disinfection/methods , SARS-CoV-2/drug effects , COVID-19/metabolism , COVID-19/transmission , COVID-19/virology , Decontamination/instrumentation , Disinfectants/analysis , Disinfection/instrumentation , Humans , Hydrodynamics , Models, Theoretical , Pandemics , SARS-CoV-2/isolation & purification
11.
Photochem Photobiol ; 97(3): 532-541, 2021 05.
Article in English | MEDLINE | ID: covidwho-1388390

ABSTRACT

During the current SARS-CoV-2 and tuberculosis global pandemics, public health and infection prevention and control professionals wrestle with cost-effective means to control airborne transmission. One technology recommended by Centers for Disease Control and Prevention and the World Health Organization for lowering indoor concentration of these and other microorganisms and viruses is upper-room ultraviolet 254 nm (UVC254 ) systems. Applying both a material balance as well as some nondimensional parameters developed by Rudnick and First, the impact of several critical parameters and their effect on the fraction of microorganisms surviving UVC254 exposure was evaluated. Vertical airspeed showed a large impact at velocities <0.05 m s-1 but a lesser effect at velocities >0.05 m s-1 . In addition, the efficacy of any upper-room UVC system is influenced greatly by the mean room fluence rate as opposed to a simple volume- or area-based dosing criteria. An alternative UVC254 dosing strategy was developed based on the fluence rate as a function of the UVC254 luminaire output (W) and the square root of the product of the room volume and the ceiling height.


Subject(s)
Air Microbiology , Disinfection/instrumentation , Disinfection/methods , Lighting , Ultraviolet Rays , Air Pollution, Indoor/prevention & control , Animals , COVID-19/prevention & control , Environment, Controlled , Infection Control/methods , SARS-CoV-2/radiation effects , Virus Inactivation/radiation effects
12.
Photochem Photobiol ; 97(3): 549-551, 2021 05.
Article in English | MEDLINE | ID: covidwho-1388389

ABSTRACT

Although the environmental control measure of ultraviolet germicidal irradiation (UVGI) for disinfection has not been widely used in the United States and some parts of the world in the past few decades, this technology has been well applied in Russia. UVGI technology has been particularly useful with regard to limiting TB transmission in medical facilities. There is good evidence that UV-C (180-280 nm) air disinfection can be a helpful intervention in reducing transmission of the SARS-CoV-2 virus.


Subject(s)
COVID-19/prevention & control , Disinfection/methods , Hospitals/standards , SARS-CoV-2/radiation effects , Ultraviolet Rays , Virus Inactivation/radiation effects , Air Microbiology , Air Pollution, Indoor/prevention & control , COVID-19/epidemiology , Disinfection/instrumentation , Humans , Infection Control , Russia
13.
Photochem Photobiol ; 97(3): 542-548, 2021 05.
Article in English | MEDLINE | ID: covidwho-1388388

ABSTRACT

Potential for SARS-CoV-2 viral inactivation by solar UV radiation in outdoor spaces in the UK has been assessed. Average erythema effective and UV-A daily radiant exposures per month were higher (statistically significant, P < 0.05) in spring 2020 in comparison with spring 2015-2019 across most of the UK, while irradiance generally appeared to be in the normal expected range of 2015-2019. It was found that these higher radiant exposures may have increased the potential for SARS-CoV-2 viral inactivation outdoors in April and May 2020. Assessment of the 6-year period 2015-2020 in the UK found that for 50-60% of the year, that is most of October to March, solar UV is unlikely to have a significant (at least 90% inactivation) impact on viral inactivation outdoors. Minimum times to reach 90% and 99% inactivation in the UK are of the order of tens of minutes and of the order of hours, respectively. However, these times are best case scenarios and should be treated with caution.


Subject(s)
COVID-19/prevention & control , SARS-CoV-2/radiation effects , Ultraviolet Rays , Virus Inactivation/radiation effects , COVID-19/virology , Disinfection/instrumentation , Disinfection/methods , Humans , Radiation Exposure , Sunlight , United Kingdom
14.
PLoS One ; 16(8): e0255533, 2021.
Article in English | MEDLINE | ID: covidwho-1374144

ABSTRACT

Dental procedures produce a large amount of spatter and aerosols that create concern for the transmission of airborne diseases, such as Covid-19. This study established a methodology with the objective of evaluating new associated strategies to reduce the risk of cross-transmission in a health environment by simulating spread of potentially contaminated dispersion particles (PCDP) in the environment. This crossover study, was conducted in a school clinic environment (4 clinics containing 12 dental chairs each). As a positive control group (without barriers), 12 professionals activated at the same time the turbine of dental drill, for one minute, with a bacterial solution (Lactobacillus casei Shirota, 1.5x108 CFU/mL), which had been added in the cooling reservoir of the dental equipment. In the experimental groups, the professionals made use of; a) an individual biosafety barrier in dentistry (IBBD) which consists of a metal support covered by a disposable PVC film barrier; b) a Mobile Unit of Disinfection by Ultraviolet-C, consisting of 8 UV lamps-C of 95W, of 304µW/cm2 of irradiance each, connected for 15 minutes (UV-C) and; c) the association between the two methods (IBBD + UV-C). In each clinic, 56 Petri dishes containing MRS agar were positioned on the lamps, benches and on the floor. In addition, plates were placed prior to each test (negative control group) and plates were also placed in the corridor that connects the four clinics. In the groups without barrier and IBBD + UV-C the passive air microorganisms in Petri dishes was also evaluated at times of 30, 60, 90 and 120 minutes after the end of the dental's drill activation. The mean (standard deviation) of CFU of L. casei Shirota for the positive control group was 3905 (1521), while in the experimental groups the mean using the IBBD was 940 (466) CFU, establishing a reduction on average, of 75% (p<0.0001). For the UV-C group, the mean was 260 (309) CFU and the association of the use of IBBD + UV-C promoted an overall average count of 152 (257) CFU, establishing a reduction on average of 93% and 96%, respectively (p<0.0001). Considering these results and the study model used, the individual biosafety barrier associated with UV-C technology showed to be efficient strategies to reduce the dispersion of bioaerosols generated in an environment with high rate of PCDP generation and may be an alternative for the improvement of biosafety in different healthy environment.


Subject(s)
Aerosols/chemistry , Disinfection/methods , Air Microbiology , Dental Clinics , Disinfection/instrumentation , Humans , Lacticaseibacillus casei/growth & development , Lacticaseibacillus casei/radiation effects , Ultraviolet Rays
15.
Viruses ; 13(8)2021 07 23.
Article in English | MEDLINE | ID: covidwho-1325790

ABSTRACT

Transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurs through respiratory droplets passed directly from person to person or indirectly through fomites, such as common use surfaces or objects. The aim of this study was to determine the virucidal efficacy of blue LED (405 nm) and far-UVC (222 nm) light in comparison to standard UVC (254 nm) irradiation for the inactivation of feline infectious peritonitis virus (FIPV) on different matrices as a model for SARS-CoV-2. Wet or dried FIPV on stainless steel, plastic, or paper discs, in the presence or absence of artificial saliva, were exposed to various wavelengths of light for different time periods (1-90 min). Dual activity of blue LED and far-UVC lights were virucidal for most wet and dried FIPV within 4 to 16 min on all matrices. Individual action of blue LED and far-UVC lights were virucidal for wet FIPV but required longer irradiation times (8-90 min) to reach a 4-log reduction. In comparison, LED (265 nm) and germicidal UVC (254 nm) were virucidal on almost all matrices for both wet and dried FIPV within 1 min exposure. UVC was more effective for the disinfection of surfaces as compared to blue LED and far-UVC individually or together. However, dual action of blue LED and far-UVC was virucidal. This combination of lights could be used as a safer alternative to traditional UVC.


Subject(s)
COVID-19/virology , Coronavirus, Feline/radiation effects , Disinfection/methods , SARS-CoV-2/radiation effects , Animals , COVID-19/prevention & control , Cats , Coronavirus Infections/virology , Coronavirus, Feline/growth & development , Coronavirus, Feline/physiology , Disinfection/instrumentation , Humans , SARS-CoV-2/growth & development , SARS-CoV-2/physiology , Ultraviolet Rays , Virus Inactivation/radiation effects
16.
Opt Express ; 29(12): 18688-18704, 2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1259231

ABSTRACT

The transmission of airborne pathogens represents a major threat to worldwide public health. Ultraviolet light irradiation can contribute to the sanification of air to reduce the pathogen transmission. We have designed a compact filter for airborne pathogen inactivation by means of UVC LED sources, whose effective irradiance is enhanced thanks to high reflective surfaces. We used ray-tracing and computational fluid dynamic simulations to model the device and to maximize the performance inside the filter volume. Simulations also show the inhibition of SARS-Cov-2 in the case of high air fluxes. This study demonstrates that current available LED technology is effective for air sanification purposes.


Subject(s)
Air Microbiology , COVID-19/prevention & control , Disinfection/instrumentation , Equipment Design , Infection Control/methods , SARS-CoV-2 , Ultraviolet Rays , Disinfection/methods , Humans , Inhalation Exposure/prevention & control , Pneumonia, Viral/prevention & control
17.
Photochem Photobiol ; 97(3): 560-565, 2021 05.
Article in English | MEDLINE | ID: covidwho-1214946

ABSTRACT

The COVID-19 pandemic provided a commercial opportunity for traders marketing a range of ultraviolet (UV) radiation products for home-use disinfection. Due to concerns about the efficacy of such products and the potential for harmful levels of UV exposure to people, a range of products were purchased from on-line trading platforms. Spectral irradiance measurements were carried out to determine whether the products could be effective against the SARS-CoV-2 virus and whether they were likely to exceed internationally agreed exposure limits. It was concluded that many of the devices were not effective and many of those that were potentially effective presented a risk to users.


Subject(s)
COVID-19/prevention & control , Disinfection/instrumentation , SARS-CoV-2/radiation effects , Ultraviolet Rays , Household Products , Humans , Virus Inactivation/radiation effects
18.
J Hosp Infect ; 112: 108-113, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1185068

ABSTRACT

BACKGROUND: The presence of coronaviruses on surfaces in the patient environment is a potential source of indirect transmission. Manual cleaning and disinfection measures do not always achieve sufficient removal of surface contamination. This increases the importance of automated solutions in the context of final disinfection of rooms in the hospital setting. Ozone is a highly effective disinfectant which, combined with high humidity, is an effective agent against respiratory viruses. Current devices allow continuous nebulization for high room humidity as well as ozone production without any consumables. AIM: In the following study, the effectiveness of a fully automatic room decontamination system based on ozone was tested against bacteriophage Φ6 (phi 6) and bovine coronavirus L9, as surrogate viruses for the pandemic coronavirus SARS-CoV-2. METHODS: For this purpose, various surfaces (ceramic tile, stainless steel surface and furniture board) were soiled with the surrogate viruses and placed at two different levels in a gas-tight test room. After using the automatic decontamination device according to the manufacturer's instructions, the surrogate viruses were recovered from the surfaces and examined by quantitative cultures. Then, reduction factors were calculated. FINDINGS: The ozone-based room decontamination device achieved virucidal efficacy (reduction factor >4 log10) against both surrogate organisms regardless of the different surfaces and positions confirming a high activity under the used conditions. CONCLUSION: Ozone is highly active against SARS-CoV-2 surrogate organisms. Further investigations are necessary for a safe application and efficacy in practice as well as integration into routine processes.


Subject(s)
Automation/instrumentation , COVID-19/prevention & control , Disinfectants/pharmacology , Disinfection/instrumentation , Disinfection/methods , Ozone/pharmacology , Animals , Bacteriophages/drug effects , COVID-19/transmission , Cattle , Coronavirus, Bovine/drug effects , Cross Infection/prevention & control , Cross Infection/virology , Decontamination/instrumentation , Decontamination/methods , Equipment and Supplies, Hospital/virology , Hospitals , Humans , SARS-CoV-2/drug effects
19.
Viruses ; 13(3)2021 03 11.
Article in English | MEDLINE | ID: covidwho-1181628

ABSTRACT

The ongoing SARS-CoV-2 pandemic has resulted in an increased need for technologies capable of efficiently disinfecting public spaces as well as personal protective equipment. UV light disinfection is a well-established method for inactivating respiratory viruses. Here, we have determined that broad-spectrum, pulsed UV light is effective at inactivating SARS-CoV-2 on multiple surfaces in vitro. For hard, non-porous surfaces, we observed that SARS-CoV-2 was inactivated to undetectable levels on plastic and glass with a UV dose of 34.9 mJ/cm2 and stainless steel with a dose of 52.5 mJ/cm2. We also observed that broad-spectrum, pulsed UV light is effective at reducing SARS-CoV-2 on N95 respirator material to undetectable levels with a dose of 103 mJ/cm2. We included UV dosimeter cards that provide a colorimetric readout of UV dose and demonstrated their utility as a means to confirm desired levels of exposure were reached. Together, the results presented here demonstrate that broad-spectrum, pulsed UV light is an effective technology for the in vitro inactivation of SARS-CoV-2 on multiple surfaces.


Subject(s)
COVID-19/virology , Disinfection/methods , Masks/virology , SARS-CoV-2/radiation effects , Virus Inactivation/radiation effects , COVID-19/prevention & control , Disinfection/instrumentation , Humans , SARS-CoV-2/physiology , Ultraviolet Rays
20.
Viruses ; 13(4)2021 03 31.
Article in English | MEDLINE | ID: covidwho-1159124

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted from person to person by close contact, small aerosol respiratory droplets, and potentially via contact with contaminated surfaces. Herein, we investigated the effectiveness of commercial UVC-LED disinfection boxes in inactivating SARS-CoV-2-contaminated surfaces of personal items. We contaminated glass, metal, and plastic samples representing the surfaces of personal items such as smartphones, coins, or credit cards with SARS-CoV-2 formulated in an organic matrix mimicking human respiratory secretions. For disinfection, the samples were placed at different distances from UVC emitting LEDs inside commercial UVC-LED disinfection boxes and irradiated for different time periods (up to 10 min). High viral loads of SARS-CoV-2 were effectively inactivated on all surfaces after 3 min of irradiation. Even 10 s of UVC-exposure strongly reduced viral loads. Thus, UVC-LED boxes proved to be an effective method for disinfecting SARS-CoV-2-contaminated surfaces that are typically found on personal items.


Subject(s)
COVID-19/virology , Disinfection/methods , SARS-CoV-2/radiation effects , Virus Inactivation/radiation effects , COVID-19/prevention & control , Cosmetics , Disinfection/instrumentation , Humans , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL